Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.

نویسندگان

  • Lilly Wong
  • Scot A Lieser
  • Osamu Miyashita
  • Meghan Miller
  • Kjetil Tasken
  • Josè N Onuchic
  • Joseph A Adams
  • Virgil L Woods
  • Patricia A Jennings
چکیده

The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Insights Reveal Novel Motions in Csk’s SH3 Domain That Control Kinase Activation

The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are kn...

متن کامل

Deletion of the SH3 domain of Src interferes with regulation by the phosphorylated carboxyl-terminal tyrosine.

A current model for the regulation of the Src protein-tyrosine kinase proposes that the COOH-terminal phosphotyrosine, Tyr-527, binds to the Src homology 2 (SH2) region in an intramolecular interaction that represses the kinase domain. This model is consistent with the activation of Src by mutations in the SH2 domain or COOH terminus. Mutations in the SH3 domain also activate Src, although this...

متن کامل

Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase

The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship betwe...

متن کامل

Csk is constitutively associated with a 60-kDa tyrosine-phosphorylated protein in human T cells.

The protein-tyrosine kinase Csk is one of the main down-regulators of the Src family of kinases. Csk may be involved in the down-regulation of T cell receptor (TCR) signaling by C-terminal tyrosine phosphorylation of Lck and Fyn; however, it is not known how Csk activity is regulated or how it targets these Src family members. We used Jurkat T cells and normal human T cells to examine proteins ...

متن کامل

Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors.

The physiological Src proto-oncogene is a protein-tyrosine kinase that plays key roles in cell growth, division, migration, and survival signaling pathways. From the N- to C-terminus, Src contains a unique domain, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a regulatory tail. The chief phosphorylation sites of human Src include an activating pTyr419 that results from pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 351 1  شماره 

صفحات  -

تاریخ انتشار 2005